# Jordan Lake Water Supply Program

May 1, 2024



### Agenda 1:30 – 3:00



- Welcome
- Introductions (around the entire room)
- Western Intake Partnership program overview
  - What's new?
- PER Spotlight: Raw Water Intake, Pump Station and Transmission
- What to expect next
- Q & A
- Networking
- Adjourn





### **Western Intake Partnership**



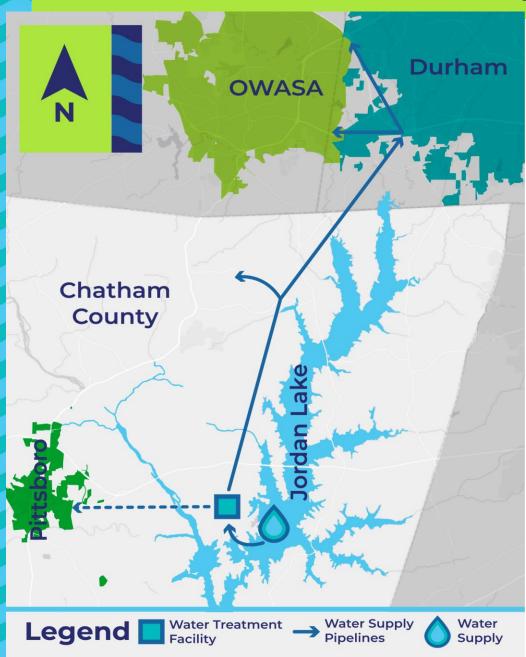








- Represents diverse cross section of Triangle communities
- Collaborating on regional water supply solution since 2014
- Formed to ensure sufficient water supply for the Partners' current customers & support long-term growth & resiliency – access Partners' Jordan Lake allocations from state
- Even with development of other supplies, WIP facilities provide needed capacity to support resiliency and growth


### **Western Intake Partnership**



- City of Durham Contracting Entity
  - Project Manager Sydney Miller
- HDR Program Manager
  - Not eligible to be a design engineer on the Program
  - Supports Selection Committees, but not a voting member
- All Meeting and/or Information Requests shall be directed to HDR:
  - Jeff Adkins jeff.adkins@hdrinc.com
  - Kip Kalisiak kip.kalisiak@hdrinc.com

### Western Intake Partnership Water Supply Project





- Access Partners' Jordan Lake allocations
- Jointly plan, design, construct and operate:
  - Jordan Lake Intake, Tunneled Raw Water Pipeline (~3/4 mile) & Pump Station
    - Progressive Design-Build Opportunity
  - Regional Water Treatment Facility (initial capacity 20 mgd, site plan for future expansions to 77 mgd)
    - Progressive Design-Build Opportunity
  - Finished Water Transmission Pipelines Initial 16 miles to Durham/Chatham;
     Pittsboro pipeline in future phase
  - 2 Elevated Water Storage Tanks
    - Traditional Design-Bid-Build



# Decisions on construction contract delineations and delivery methods



- Key Decisions that led Partners to PDB:
  - "Reserving" an A-Team Contractor/Engineer; recognize limited resources in the market
  - Collaborative approach
  - Quals-based selection
  - Risk mitigation
- Important Factors to Partners
  - Locally-based project leadership
  - Consistency with project leadership team
  - Need to show separate teams if pursuing multiple contracts
  - Contractor capacity to self-perform significant portion of work

### **Program Schedule**





### What's new since WIP May 2023 Outreach Event?



- Clearer picture of Partner participation and capacity allocations
- Decisions on construction contract delineations and delivery methods
- Preliminary Engineering Reports nearing completion
  - Surveys and Geotech investigations
  - Raw Water Intake, Pump Station and Transmission PER submitted for final review
  - Regional Water Treatment Facility PER expected June
  - Finished Water Transmission PER nearly complete
    - o Final work to identify intermediate & northern elevated storage tank locations
- Fieldwork for Environmental Assessment (wetlands, streams, species surveys, cultural & historic resources)
  - EA prepared for submittal to USACE and DEQ

### **Current Preliminary Construction Cost Estimate**



| PDB Program Element                      | Preliminary Estimate (\$M) |
|------------------------------------------|----------------------------|
| Intake, Raw Water Pumping & Transmission | \$117M                     |
| Regional Water Treatment Facility        | \$460M                     |

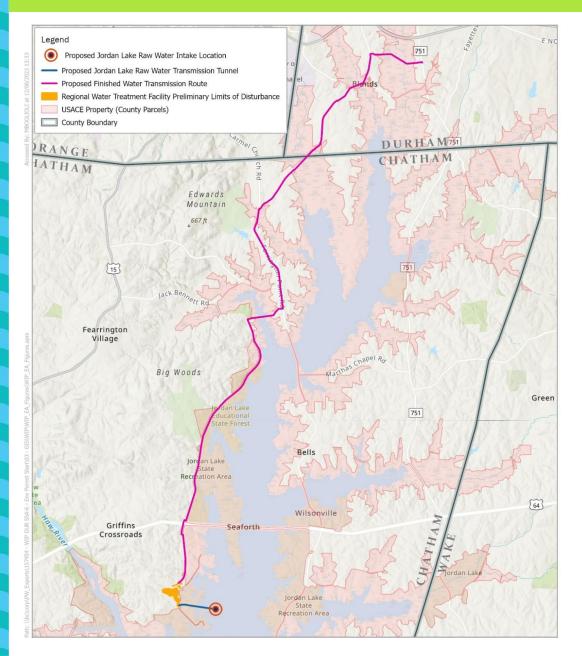
| DBB Program Element                   | Preliminary Estimate (\$M)       |
|---------------------------------------|----------------------------------|
| Finished Water Transmission to Durham | \$152M (36-in)<br>\$190M (42-in) |
| Two Elevated Storage Tanks            | \$21M                            |

Total Program Preliminary Estimate (PDB + DBB Elements) = \$750M-\$788M

### Jordan Lake as a Water Source



- Lake eutrophic from the beginning
- Seasonal taste & odor issues (MIB, Geosmin)
- Nutrient Management
  - Jordan Lake Rules
  - NC Collaboratory study late 2019
- Emerging contaminants (PFAS, 1,4-dioxane, Bromide)
- Intake WQ analysis 2021-present
  - WQ data will be shared
- Proposed intake
  - Near Vista Point State Rec Area
  - Historic New Hope Creek


### Proposed Raw Water Design Conditions

| Parameter              | Normal | Challenging |
|------------------------|--------|-------------|
| Turbidity, NTU         | 8.4    | >20         |
| Tot Manganese, mg/L    | 0.12   | >1          |
| Tot Iron, mg/L         | 0.23   | >0.3        |
| Bromide, µg/L          | 138.5  | >200        |
| MIB, ng/L              | 9.7    | >150        |
| Geosmin, ng/L          | 14.3   | >100        |
| 1,4-Dioxane, µg/L      | 1.15   | 1.5         |
| Tot Microcystins, μg/L | 0.25   | >1.2        |
| PFOA, ng/L             | 6.6    | 7.4*        |
| PFOS, ng/L             | 9.5    | 10.5*       |
| PFBS, ng/L             | 5.8    | 6.3*        |

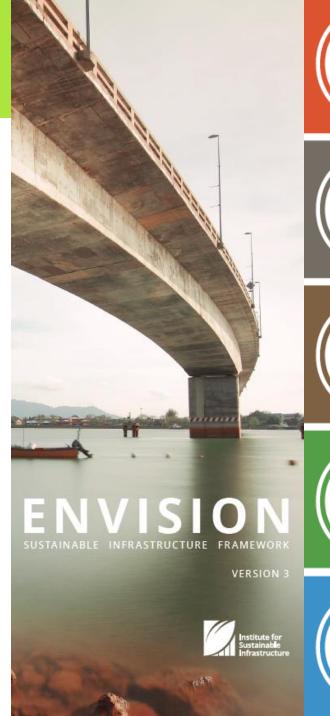
<sup>\* 75&</sup>lt;sup>th</sup> percentile of historic data

### **Finished Water Transmission Pipelines to Partners**





- Traditional Delivery project
- Transmission pipelines along roadways from Treatment Facility
- 16-mile transmission pipeline from
   Treatment Facility to Durham and
   Chatham Co. water distribution systems
  - Chatham County interconnect location TBD
  - OWASA receives WIP water through existing Durham interconnects, emergencies only during initial phase
  - Future parallel pipeline
- Future 6-mile transmission pipeline to Pittsboro


# WIP is using Envision to encourage Sustainability



**Tools** to plan, design, construct, operate and rate civil infrastructure

- Framework to help project teams identify sustainable approaches
- Self-assessment checklist
- Project verification & recognition program

Speaks to triple bottom line: social, economic & environmental goals















## Raw Water Intake, Pump Station and Transmission PER Overview









Raw Water Intake, Pump Station, and Transmission – Alternatives Evaluation Technical Memorandum

Draft TM

Hazen No 31507-000 February 6, 2024

- One of 3 Hazen PER Tech Memos
  - Others are related to Finished Water
     Transmission program element
  - Draft final Memo submitted late April
- Final version will be available for review on request later this month

- WTF PER to be finalized ~September
- Expect similar overview and availability on request

## Raw Water Intake, Pump Station and Transmission PER Overview

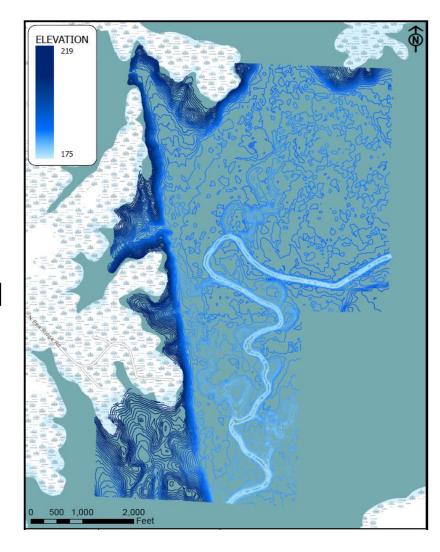


## Alternatives analysis for new Raw Water facilities

# **Goal**: Convey water from west side of Jordan Lake to Partners' new Water Treatment Facility

### **Sections:**

- Introduction & Background
- In-Situ and Modeling Investigations
- Location Alternatives for Raw Water Intake & Pump Station
- Raw Water Intake Alternatives
  - Screen Type
  - Configuration (Tower/Submerged)


- Intake Piping Trenchless Alternatives
- Recommended Raw Water Intake & Piping Configuration
- Raw Water Pump Station Configuration
- Raw Water Intake Alternatives
- Raw Water Transmission Configuration
- Construction Cost Estimate

## Raw Water Intake, Pump Station and Transmission PER Overview



# Guiding Design Principles for Raw Water Infrastructure

- Thalweg Access resilient to severe drought
  - Vicinity bathymetric survey completed
- Sustainable pumping operation above flood elevation, including access to station during flood event
- Intake capable of multi-level withdrawals as needed for seasonal WQ challenges
  - Changing intake elevation is infrequent
  - In-lake modeling built on 2018 Jordan Lake Nutrient Management Report models
- Minimize disturbance to Vista Point Rec Area



### Raw Water Intake and Pump Station Location



### **Intake Location**

- Initially evaluated 1991
- WIP evaluated 3 in-lake intake locations
  - Bells Landing, 2 areas off Vista Point
- Preferred location north of Vista Point

### Raw Water Pump Station Location

- Consideration limited to locations not impacted by flood conditions
- Preferred location SE corner of property owned by OWASA
- Fewer issues with access, easements





# View from Vista Point Sailboat Launch toward Proposed Intake Location





### Raw Water Intake Configuration Alternatives



# Evaluated two intake configurations:

- In-lake Tower Style Intake w/ integral gates for intake level control
- Submerged Screen Style
   Intake with onshore gates



### **Preferred option:**

Concrete In-Lake Tower
Tee Barrel Screens
3 Withdrawal Elevations
ultimate 86 MGD capacity



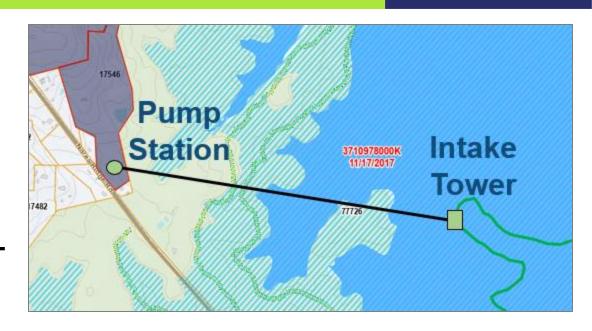


### **Considerations & Consequences for Intake Selection**



- Local Reservoir Intake Examples
- Agency input during 2023 important to intake style selection

### NC Parks, NC Wildlife Resources Commission, NC Div. of Water Resources

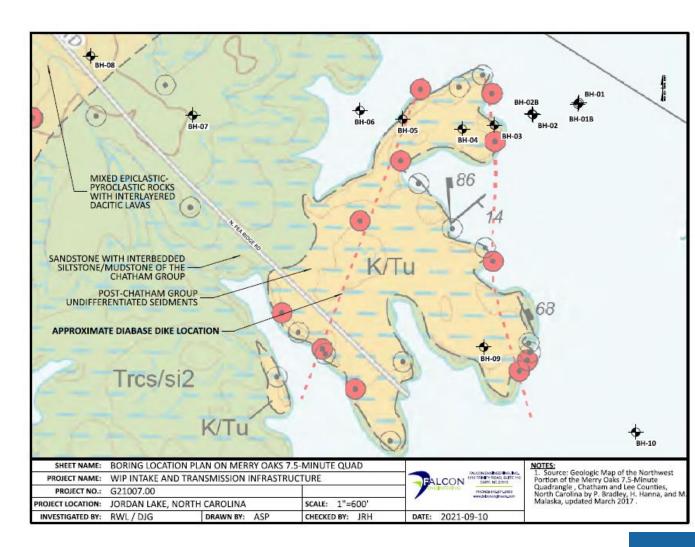

- Construction impacts to Park in either option
- Submerged intake structure requires on-land gate structure
- Concerns operating/maintaining permanent WIP structures in Park
- Tower intake presents navigational hazard challenges; requires lighting and buoys
- Potential security concerns similar to Falls Lake
- Intake will be accessed by boat for O&M
- Not practical to run power to Intake to operate gates, provide lighting
- Public safety, security, lighting important design considerations
- Vista Point Recreation Area must be closed during construction

### **Raw Water Intake Piping Alternatives**



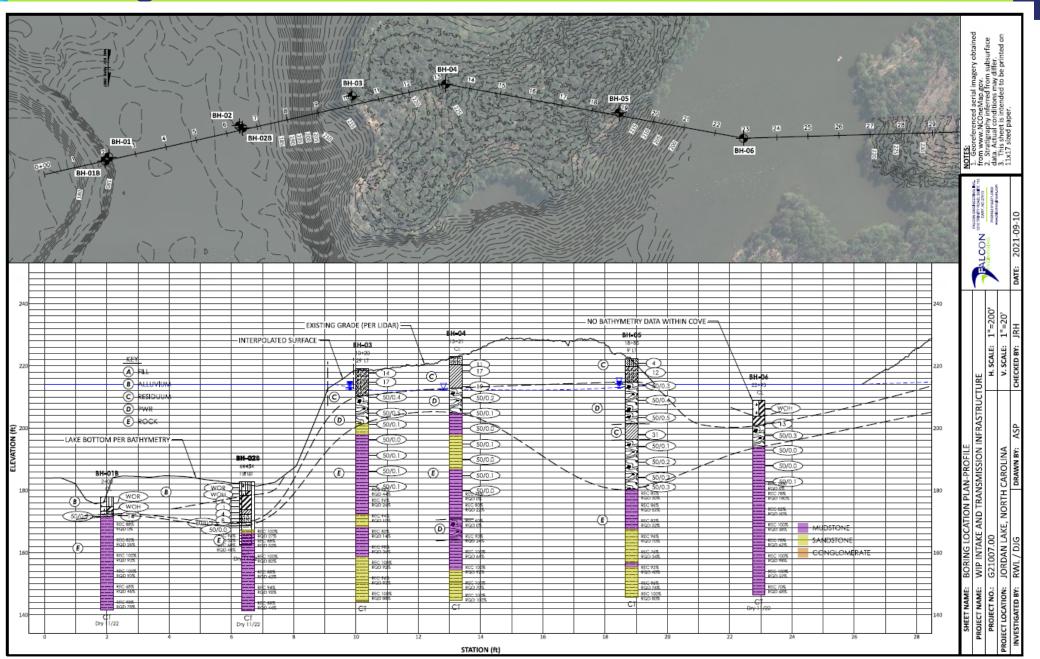
Both *open-cut* and *tunnel* raw water intake pipeline construction initially discussed ....

- ...but early <u>determined tunnel would</u> <u>be needed</u> to address intake depth + USACE, NC Parks concerns
- Geotechnical investigation to assess subsurface conditions, characterize rock along tunnel alignment
- Seismic Risk Index Iow




## **Geotechnical Investigation Report – TM Appendix A**



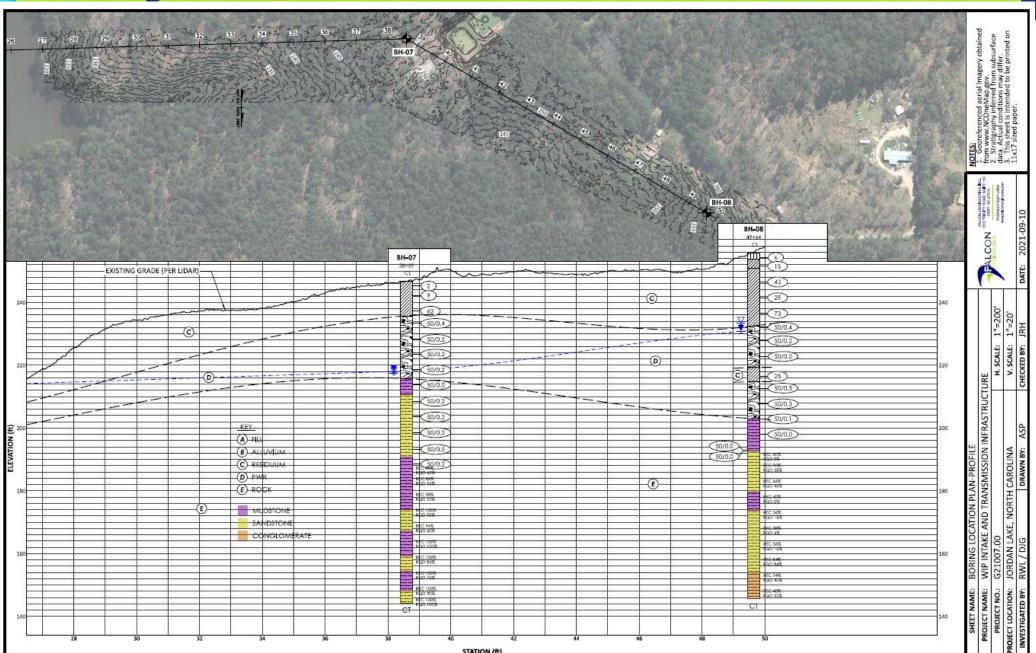

### Soil Borings – 10 along two potential tunnel routes

| PRELIMINARY GEOTECHNICAL REPORT OF SUBSURFACE INVESTIGATI                      | ON 📝 |
|--------------------------------------------------------------------------------|------|
| TABLE OF CONTENTS                                                              |      |
| SECTION 1: PROJECT INFORMATION                                                 | 5    |
| 1.1 PROJECT DESCRIPTION                                                        |      |
| 1.2 SITE DESCRIPTION                                                           | 5    |
| 1.3 SITE GEOLOGIC DESCRIPTION                                                  | 5    |
| 1.3.1 THE TRIASSIC BASIN                                                       | 5    |
| 1.3.2 DIABASE                                                                  |      |
| 1.3.3 METAMORPHIC ROCKS                                                        |      |
| 1.4 TOPOGRAPHICAL DATA                                                         |      |
| SECTION 2: PURPOSE AND SCOPE                                                   | 8    |
| SECTION 3: FIELD INVESTIGATION                                                 | 9    |
| 3.1 SITE RECONNAISSANCE AND PROJECT SET-UP                                     | 9    |
| 3.2 SOIL TEST BORINGS                                                          | 9    |
| SECTION 4: LABORATORY TESTING                                                  | 10   |
| 4.1 SOIL AND ROCK TESTING                                                      | 10   |
| TABLE 4.1: SUMMARY OF ROCK SAMPLE TESTING                                      | 10   |
| 4.1 HISTORIC TEST DATA                                                         |      |
| TABLE 4.2: SUMMARY OF DIABASE ROCK SAMPLE TESTED FOR OTHER PROJECTS            |      |
| SECTION 5: SUBSURFACE CONDITIONS                                               |      |
| 5.1 SURFACE MATERIALS, SOIL, AND ROCK                                          |      |
| 5.1 SORPACE WATERIALS, SOIL, AND ROCK                                          |      |
| 5.3 VISUALIZATION OF SUBSURFACE DATA                                           |      |
| SECTION 6: PRELIMINARY GEOTECHNICAL CONSIDERATIONS                             | 1/   |
| 6.1 POTENTIAL GEOLOGICAL HAZARDS                                               |      |
| 6.2 SITE EXCAVATION                                                            |      |
| 6.3 GROUNDWATER                                                                |      |
| TABLE 6.1: SUMMARY OF GROUNDWATER READINGS                                     | 15   |
| FIGURE 6.1: PUBLISHED INTRINSIC PERMEABILITY AND HYDRAULIC CONDUCTIVITY VALUES |      |
| 6.4 SUBSURFACE CONDITIONS                                                      | 17   |
| SECTION 7: CLOSURE                                                             | 19   |
|                                                                                |      |



### **Boring Location Plan/Profile**



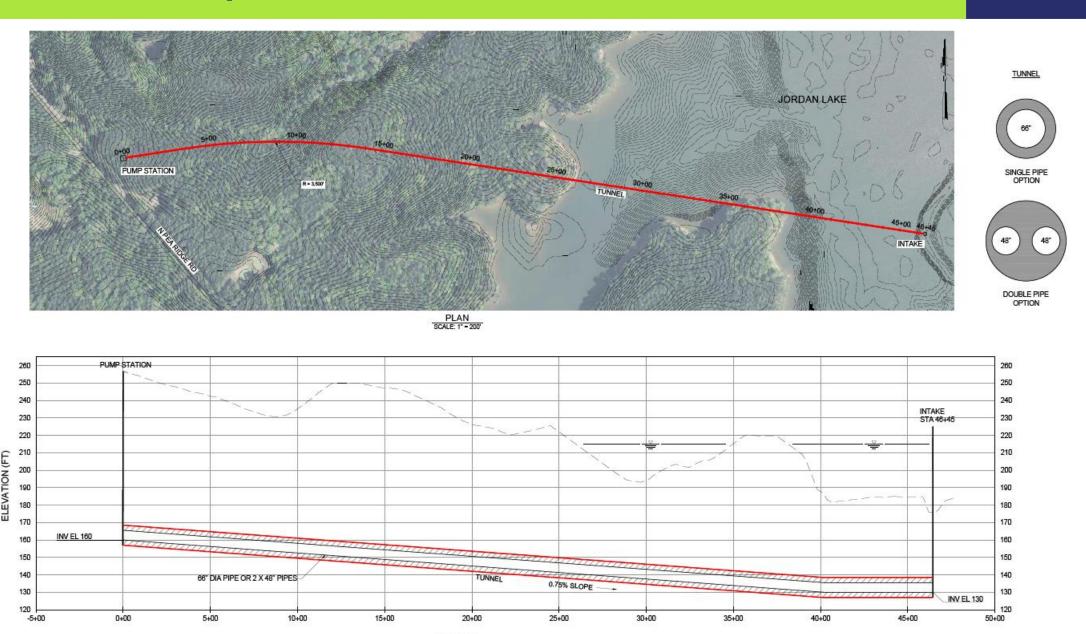



#### North



## **Boring Location Plan/Profile**






#### North



## Raw Water Pipeline Trenchless Alternatives



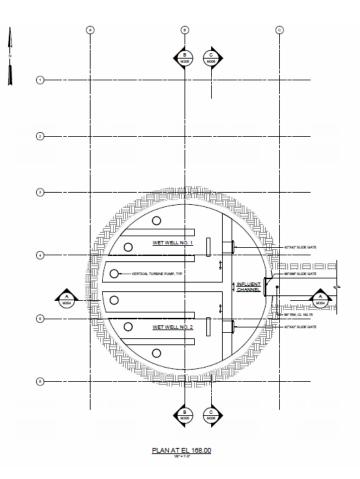


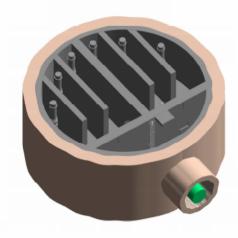
PROFILE HORIZONTAL SCALE: 1" = 200" VERTICAL SCALE: 1" = 2"

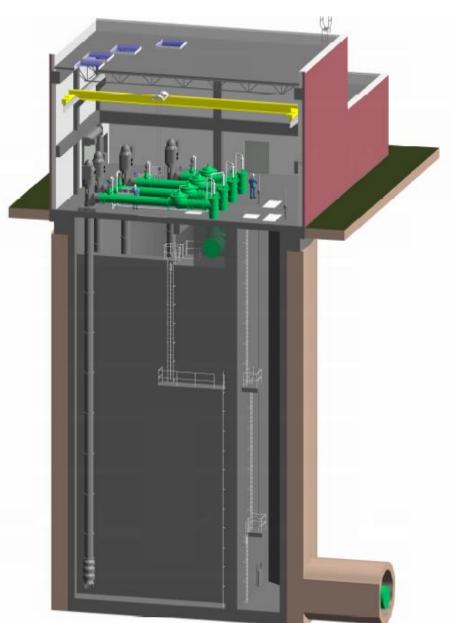
### **Raw Water Intake and Piping Configuration**



- Preliminarily, Partners may consider alternate Tunnel options, leverage PDB Team input on most costeffective
- Recognize contractor & TBM equipment availability are factors


Table 7-1: Recommended Intake and Piping Configuration


| Design Feature                              | Selection                               |               |
|---------------------------------------------|-----------------------------------------|---------------|
| Intake Location                             | Vista Point – Area 1 <sup>1</sup>       |               |
| Pump Station Location                       | OWASA-owned Seaforth Property           |               |
| Intake Design                               |                                         |               |
| Configuration                               | Tower                                   |               |
| Screen Technology                           | Tee-Style Barrel Screens                |               |
| Screen Barrel / Outlet Diameter             | 60 inches / 48 inches                   |               |
| Slot Size                                   | 1/8-inch                                |               |
| Screen Capacity                             | ~23 mgd                                 |               |
| Screen Isolation                            | 48-inch Butterfly Valve                 |               |
| Withdrawal Elevations                       | 3 – EL 207.00, EL 200.50, EL 182.50     |               |
| Screen Quantity per Withdrawal<br>Elevation | 2 (Initial Construction), 4 (Build-Out) |               |
| Trenchless Technology                       | ТВМ                                     |               |
| Tunnel / Piping Design <sup>2</sup>         | Option 1                                | Option 2      |
| Tunnel Diameter                             | 8 feet                                  | 12 feet       |
| Intake Piping Quantity / Diameter           | 1 / 66 inches                           | 2 / 48 inches |


## **Raw Water Pump Station Configuration**



- Pump Station wet well is launch point for tunnel construction
- 22 MGD initial pumping capacity







### **Raw Water Pump Station Features**



Table 8-1: Capacity Requirements

| Planning Horizon | Capacity, mgd                        |  |
|------------------|--------------------------------------|--|
| Initial          | 20 (Finished Water) / 22 (Raw Water) |  |
| 2050             | 26 (Finished Water) / 29 (Raw Water) |  |
| 2070             | 40 (Finished Water) / 44 (Raw Water) |  |
| Build-Out        | 86 (Raw Water)                       |  |

- Ultimate build-out capacity based on <u>max demand</u> corresponding to <u>remaining Jordan Lake</u> <u>allocations not accessed at Cary-Apex</u>
- Initial pumping & above-ground piping based on 2050 demand
- Initial 4 vertical turbine pumps (2x7 mgd, 2x10 mgd)
- 56-ft circular wet well, Hydraulics Institute
- Electrical room

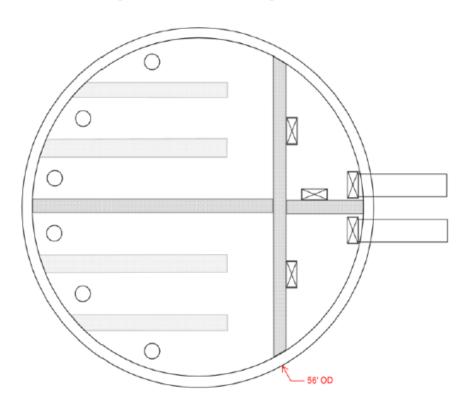



Figure 8-3: Circular Wet Well Configuration - Iteration 2

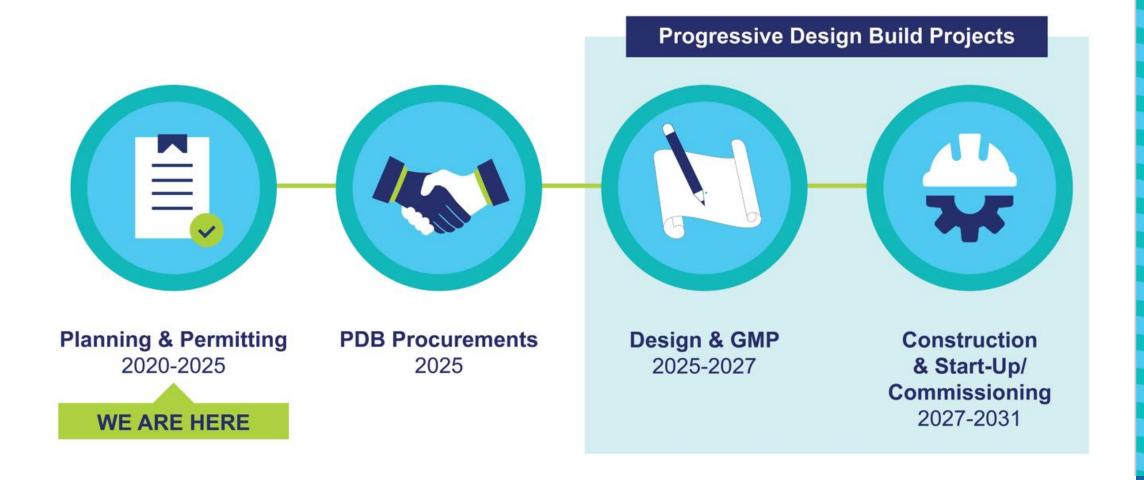
### **Raw Water Pump Station Features**





- Zoning requires 100-ft vegetated buffer
- Chemical storage & feed facilities for WTF will also provide for RW facilities
- Raw water pumped to WTF's raw water reservoirs

## **Accessing PER information**




- WIP PERs will be available to interested engineers and contractors
  - Final Raw Water Intake, Pump Station & Transmission PER ready in May
  - Water Treatment Facility PER draft submitted in June, final August-September; available when final
- Contact Jeff Adkins/HDR to request
- Other useful information and links for WIP projects available at
  - WIP website <u>www.westernintakepartnership.com</u>
  - Chatham County website www.chathamcountync.gov, 2024 rezoning page



### **PDB Delivery Schedule**





### **Next 12 Months**



### By Late Summer

- Preliminary Engineering TMs complete
- PDB Teams can schedule presentations with WIP
- Expect Non-Recreational Outgrant applications submitted to USACE
- Interlocal Agreement ready for Partners approval

### By end of 2024

- Finished Water Transmission survey, easement requirements
- Outgrant applications prompt Agency EA review & opportunity for public input

### **Early 2025**

• 1st PDB RFQ



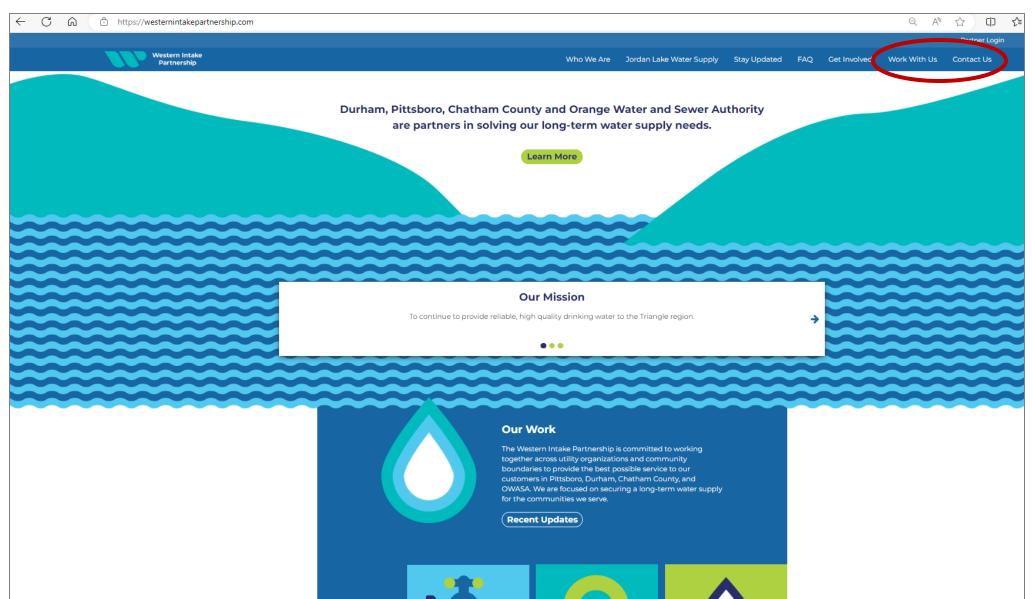
### **Progressive Design Build Procurements**



- Working on DB contract documents and RFQs
- City of Durham is WIP's Contracting Agent
- Planning solicitations for PDB Contracts in 2025
  - 1st RFQ Water Treatment Facility (Contract 2) March/April
  - 2<sup>nd</sup> RFQ Intake & Raw Water Facilities (Contract 1) June/July
- Not planning to issue 2<sup>nd</sup> RFQ until selection made on 1<sup>st</sup> RFQ
- 2-stage selection SOQ, Interviews
  - Structured evaluation criteria will be in RFQ

Traditional Delivery Project – 16-mile Finished Water Transmission Pipeline – Hazen to continue to final design, anticipate bidding 2027

## **City of Durham UBE Requirements**




- <u>All</u> construction projects PDB and Traditional will have goals for Underutilized Business Enterprise (UBE) participation
  - % Minority-owned and % Women-owned UBE firms
- Underutilized Business Enterprise Compliance Division in Finance Department; requirements at City's website <a href="https://www.durhamnc.gov/4091/Underutilized-Business-Compliance-Divisi">https://www.durhamnc.gov/4091/Underutilized-Business-Compliance-Divisi</a> email: ubcfinance@durhamnc.gov
- RFQ will explain UBE requirements with forms all proposers are required to complete
  - UBE Participation Documentation
  - Consultant Workforce Diversity Questionnaire
  - Letter(s) of Intent to Perform as a Sub-Consultant

#### Partnership Website – sign up for updates & newsletter



#### westernintakepartnership.com



#### **Opportunity - PDB Team Summer 2024 Meetings with WIP**



# <u>August - September</u>: WIP Partner Staff & HDR representatives available to meet with PDB Teams

#### Framework:

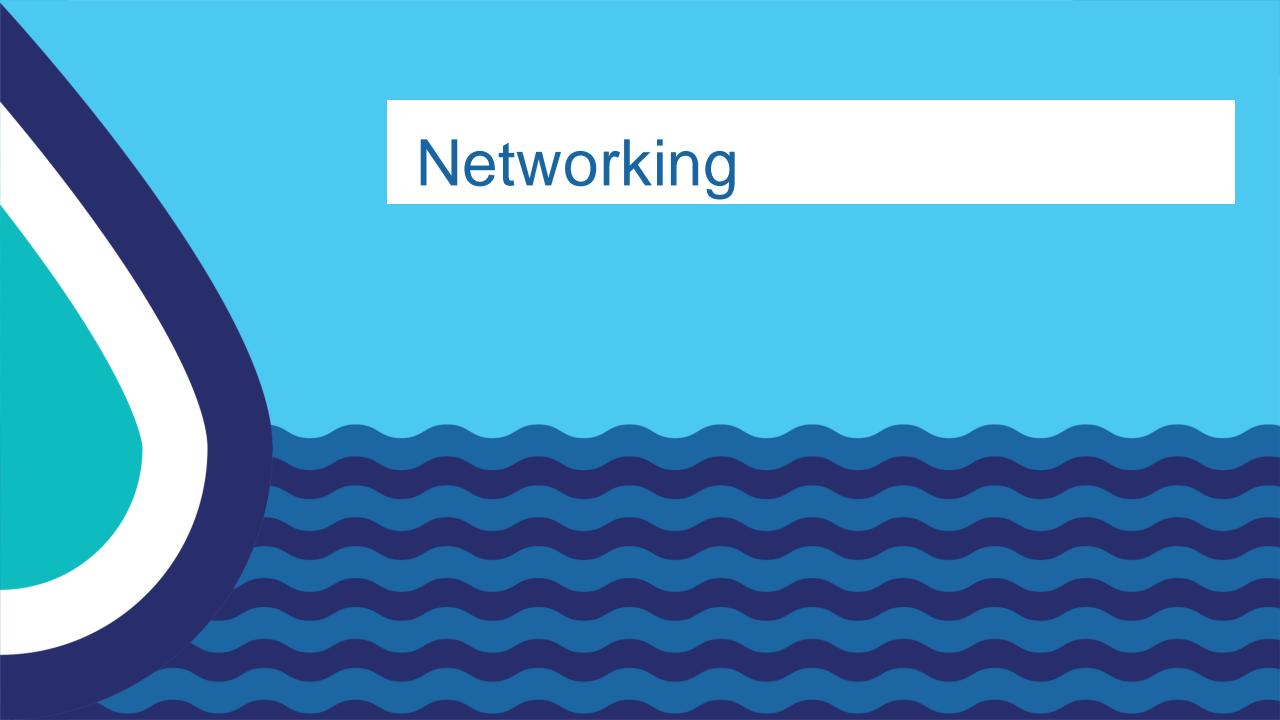
- 1.5 hr slots
- 8 time slots, first-come first-served
- PDB Teams not engineers or contractors individually
- Separate meetings for each PDB opportunity, or meet jointly
- Sign-up with Jeff Adkins/HDR
- Structured framework
  - Introductions
  - Overview
  - PDB Team approach to project delivery

- PDB Lessons learned
- Market conditions affecting WIP
- Questions (submit ahead)

# **August WIP Construction Industry Outreach Event – Updates & WTF Prelim. Engineering Report Overview**






## **Meeting and/or Information Requests**

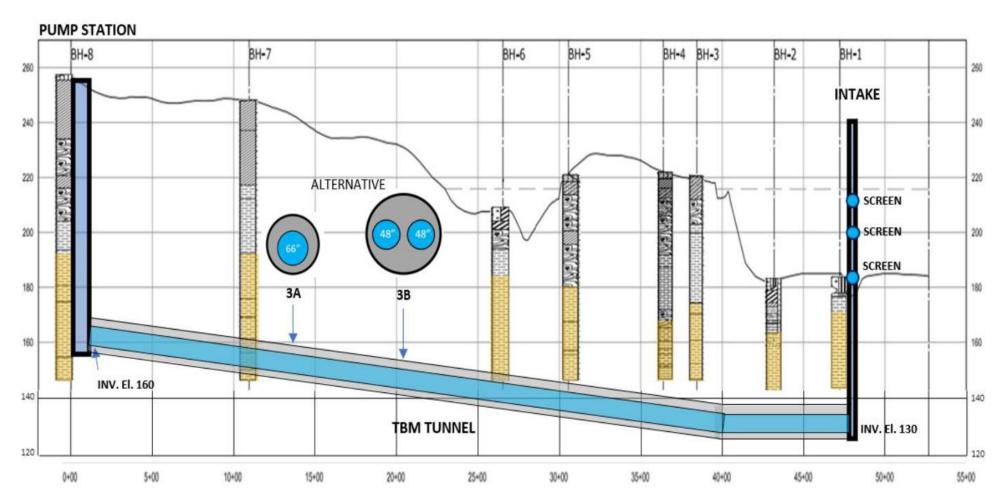


Jeff Adkins – jeff.adkins@hdrinc.com Kip Kalisiak – kip.kalisiak@hdrinc.com



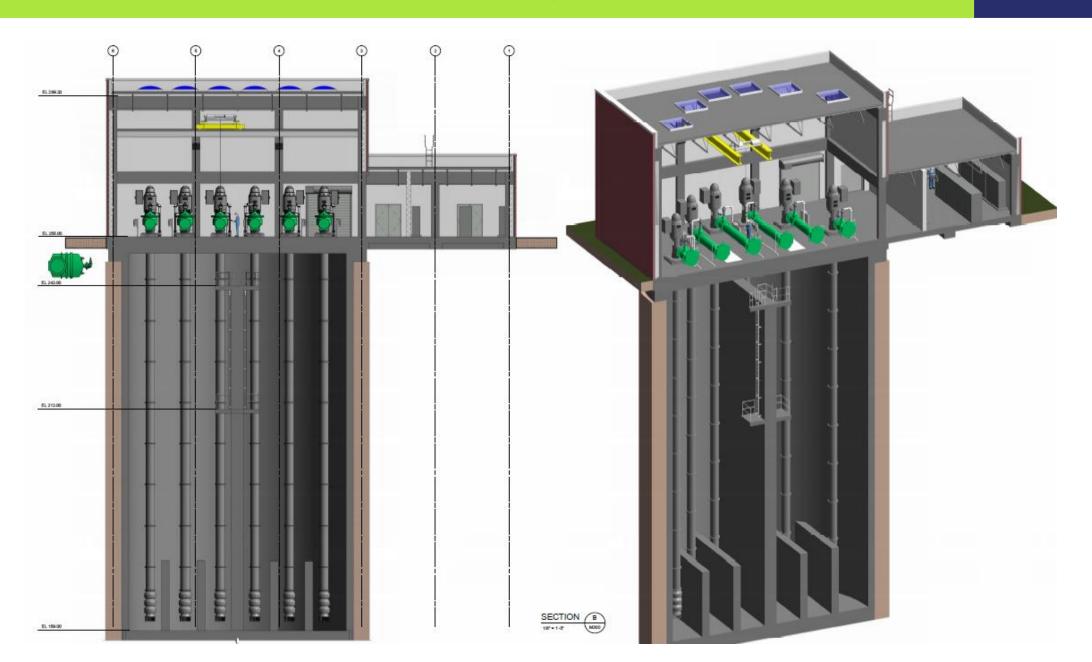







# Extra Slides for Q&A

#### Raw Water Pipeline Trenchless Alternatives




- 6 trenchless alternatives considered
- After initial screening & decision for In-Lake Intake Tower,
   2 alternatives remained



## Raw Water Pump Station Configuration





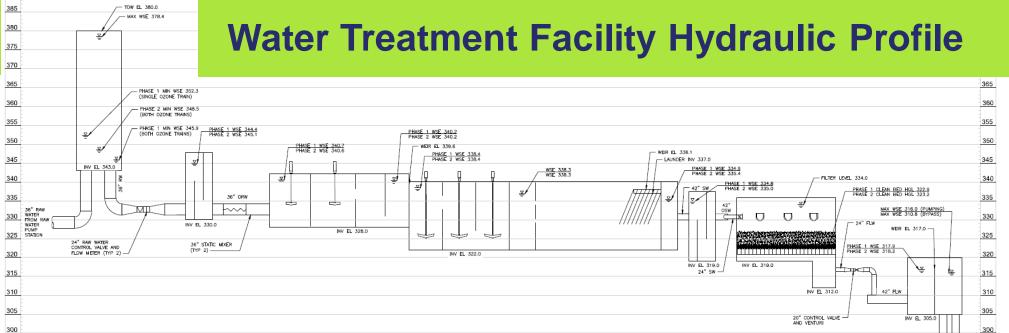
## **WIP Preliminary Projects Schedule 2021-2024**

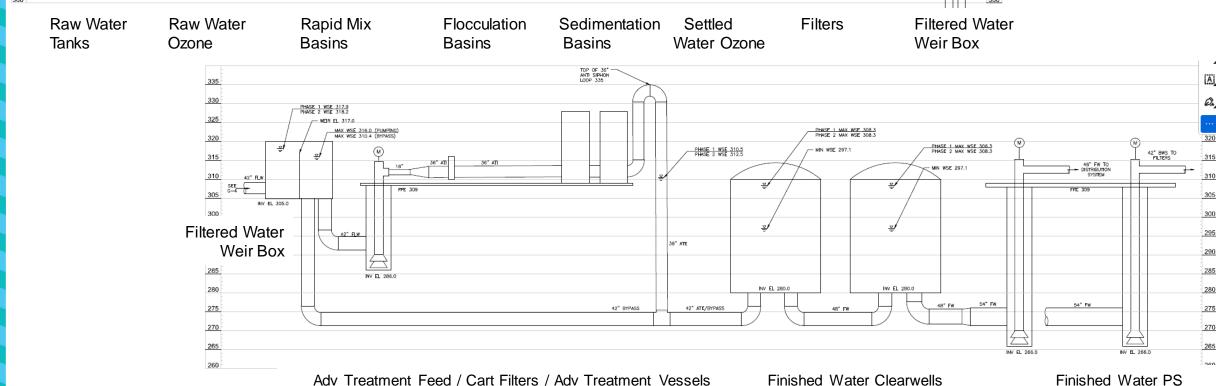


| Project/Milestone                                       | 3Q21 | 4Q21 | 1Q22          | 2Q22 | 3Q22 | 4Q22 | 1Q23 | 2Q23 | 3Q23 | 4Q23 | 1Q24 | 2Q24 | 3Q24 | 4Q24 |
|---------------------------------------------------------|------|------|---------------|------|------|------|------|------|------|------|------|------|------|------|
| Intake-Water Infrastructure Prelim Engineering          |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| WQ Sampling/Analysis                                    |      |      |               |      |      |      |      | -    |      |      |      |      |      |      |
| Data Collection/Review/Planning                         |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
|                                                         |      |      |               |      |      |      |      | -    |      |      |      |      |      |      |
| Develop Project Alternatives                            |      |      |               |      |      |      |      | •    |      |      |      |      |      |      |
| Field Investigations                                    |      |      |               |      |      |      |      | •    |      |      |      |      |      |      |
| Intake/Raw Water PS Evaluation                          |      |      |               |      |      |      |      | -    |      |      |      |      |      |      |
| Transmission System Evaluation                          |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| Preliminary Engineering & PER                           |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| WIP Governance                                          |      |      |               | _    |      |      |      |      |      |      |      |      |      |      |
| Evaluate Governance Models and Financial Feasibility    |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| Refine Preferred Alternative                            |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| Develop & Approve MOU                                   |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| Develop & Approve Legal Instrument (Working Groups)     |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| Implementation Phase                                    |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| Environmental Permitting Project                        |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| Planning, Strategy Development, Initial Request for Use |      |      |               |      |      |      |      | :    |      |      |      |      |      |      |
| Coordination with WIP and Agencies                      |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| Environmental Resource Investigations                   |      |      |               |      |      |      |      | -    |      |      |      |      |      |      |
| Alternatives Development and Analysis                   |      |      |               |      |      |      |      | -    |      |      |      |      |      |      |
| Non-Recreation Grant Requests                           |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| Environmental Permitting and Regulatory Approvals       |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| Regional WTF Prelim Engineering                         |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| Data Collection/Review                                  |      |      | $\overline{}$ |      |      |      |      | :    |      |      |      |      |      |      |
| Field Investigations                                    |      |      |               |      |      |      |      | -    |      |      |      |      |      |      |
| WQ Analysis                                             |      |      |               |      |      |      |      | -    |      |      |      |      |      |      |
| Treatment Technology Pilot                              |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| Technical Document                                      |      |      |               |      |      |      |      |      |      |      |      |      |      |      |
| PER                                                     |      |      |               |      |      |      |      |      |      |      |      | 1    |      |      |
| Earliest Start to Final Design Procurement              |      |      |               |      |      |      |      |      |      |      |      |      | 4    |      |
|                                                         | 3Q21 | 4Q21 | 1Q22          | 2Q22 | 3Q22 | 4Q22 | 1Q23 | 2Q23 | 3Q23 | 4Q23 | 1Q24 | 2Q24 | 3Q24 | 4Q24 |

# August WIP Construction Industry Outreach Event – Updates & WTF Prelim. Engineering Report Overview







| KEY  |                                                              |
|------|--------------------------------------------------------------|
| 1    | ADMIN/ OPERATIONS BUILDING (227'x51')                        |
| 2    | MAINTENANCE BUILDING (110'x98')                              |
| 3    | SUBSTATION / TRANSFORMERS (90'x75')                          |
| 4    | 7.5MG RAW WATER STORAGE TANK (2 No. 190' DIA.)               |
| (5)  | RAW WATER OZONE INJECTION BUILDING AND CONTACTORS (66'x40')  |
| 6    | RAPID MIX (37'x16')                                          |
| 7    | FLOCCULATION (6 No. 62'x19')                                 |
| 8    | SEDIMENTATION BASINS WITH PLATE SETTLERS (4 No. 70'x30')     |
| 9    | OZONE GENERATORS AND SETTLED WATER CONTACTORS (152'x66')     |
| 10   | FILTERS (152'x130')                                          |
| 11   | GAC (123'x114')                                              |
| (12) | HSPS (195.5'x75')                                            |
| 13   | 5MG CLEARWELL (2 No. 160' DIA.)                              |
| (14) | ELECTRICAL / GENERATORS BLDG (120'x110')                     |
| 15   | CHEMICAL BLDG (200'x100')                                    |
| 16   | LOX STORAGE (60'x45')                                        |
| (17) | GRAVITY THICKENER (2 No. 62' DIA.)                           |
| (18) | THICKENED SOLIDS PS (70'x30')                                |
| (19) | DEWATERING BLDG (92'x92')                                    |
| 20   | THICKENED SOLIDS STORAGE (2 No. 42' DIA.)                    |
| (21) | BW EQ BASIN (80'x60')                                        |
| (22) | BW PLATE SETTLERS AND RECYCLE PS (90'x40')                   |
| (23) | RECLAMATION BASINS (2 No. 175'x175')                         |
| (24) | SEPTIC DRAINAGE FIELD (150'x150')                            |
| (25) | RAW WATER PUMP STATION (95'x70')                             |
| 26   | PAC SILO (14' DIA.)                                          |
| (27) | OPTIONAL WEIGH STATION (100'x12')                            |
| (28) | FUEL STORAGE FOR STANDBY GENERATORS (60'x45')                |
| 29   | CAKE STORAGE (160'x120')                                     |
| (30) | DUPLEX SEPTIC PS (12'x6') AND VALVE BOX (3'x3')              |
| (31) | ELECTRICAL BUILDING (60'x40')                                |
| (32) | POSSIBLE IX (250'x105')                                      |
| (33) | SURGE TANKS (35'x20')                                        |
| (34) | FUTURE RO OR GAC/IX                                          |
|      | END:                                                         |
|      | PROPOSED FACILITY - 30 MGD (PHASE 1- 2031)                   |
|      | POSSIBLE FUTURE FACILITIES - 40 MGD (PHASE 2)                |
|      | POSSIBLE FUTURE FACILITIES TO BUILDOUT (PHASE 3)             |
| _    | ASPHALT ROAD                                                 |
|      | CONCRETE PAVEMENT                                            |
| -    | GRAVEL ROAD                                                  |
|      | WETLAND                                                      |
|      | OPEN WATER                                                   |
|      | ADDDOVIMATE LOCATION OF EVISTING CEMETERY /TO BE DEVISED     |
|      | FOLLOWING DETERMINATION OF CEMETERY BOUNDARY)                |
|      | STORMWATER CONTROL MEASURE (SCM)                             |
|      | EPHEMERAL STREAM                                             |
|      | INTERMITTENT STREAM     60' SETBACK FROM INTERMITTENT STREAM |
|      | - WIP RWTF                                                   |
|      | - 50' SETBACK FROM PROPERTY LINE                             |
|      | - 100' SETBACK FROM PROPERTY LINE                            |
|      | 100' SETBACK FROM ROADS                                      |

# Water Treatment Facility Operations Building – Rendering of Preliminary Concept









Western Intake